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Abstract

We modified the perturbed hard-sphere-chain (PHSC) equation-of-state by introducing Chapman’s equation into the bonding term of the
reference equation. The proposed model successfully predicts the vapor/liquid equilibria (VLE) of pure fluids with three characteristic
parameters obtained for each substance. We also extended the modified PHSC equation-of-state to describe the liquid/liquid equilibria (LLE)
of polymer solutions. Characteristic parameters obtained from the pure substances were directly used to predict the LLE of polymer
solutions. The calculated coexistence curves using the proposed model agree remarkably well with the experimental data.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The equation-of-state theory gives us very useful
information in investigating the properties of fluids, includ-
ing mixtures of chain-like molecules. It contains all the
information about a substance, and any equilibrium property
can be obtained from any one of the fundamental equations-
of-state by applying the appropriate thermodynamic
relations. However, in the early pioneering days, the devel-
opment of the fundamental equations-of-state was very slow
and limited to a few pure fluids which have small molecular
sizes and low molecular weights. Now, many theoretical
approaches have been available for years, for predicting
the non-ideal behavior of polymer solutions. Most of them
can be considered either as generalized van der Waals or
lattice-like models. These models currently give a correct
qualitative behavior of the phase diagrams found in polymer
systems.

The first qualitatively correct theory for the phase
behaviors of polymer solutions was independently proposed
by Flory [1] and Huggins [2] in 1941. The Flory–Huggins
(F–H) theory considers a polymer molecule as a chain ofr
roughly spherical segments and the number of ways in
which these polymer segments and solvent molecules can
be arranged in a three-dimensional (3D) lattice in which the
size of the each cells are all equal. However, this theory

gives too narrow liquid–liquid coexistence curve when
compared with experimental data for the polymer solution
system. Moreover, the F–H polymer solution theory failed
to describe a lower-critical-solution-temperature (LCST) at
elevated temperatures. For more accurate description for the
phase equilibrium of the polymer solutions, numerous
studies on the modification of the lattice theory have been
reported by Sanchez and Lacombe [3,4], Kleintjents and
Koningsveld [5], and Hu et al. [6].

In recent years, there has been a continuing interest in the
development of theoretically-based equations-of-state for
chain-like molecules. The molecular description of these
polymeric fluids is complicated, due to their asymmetric
structure, etc. To understand chain fluids, it seems advanta-
geous to develop ways of relating their behavior to simpler,
more easily understood fluids. The hard-sphere-chain model
provides an intuitively appealing starting point for the study
of chain fluids [7]. Each molecule is modeled as a series of
freely-jointed, tangent, hard spheres which interact through
site–site potentials. The use of the hard-sphere-chain model
simplifies the nature of the site–site interactions while
retaining the essential geometric features of the chain, and
allows one to explore the effects of molecular geometry and
internal flexibility on the local structure of the fluid. At the
same time, the hard chain system can serve as a reference
fluid about which attractive interactions may be introduced
as perturbations. In this sense, the hard-sphere-chain model
can play an important role in the study of more realistic
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chain fluids analogous to that played by the hard-sphere
monomer in the study of more complex monatomic fluids.

In 1994, Song et al. [8] proposed the perturbed hard-
sphere-chain (PHSC) equation-of-state for the purpose of
calculating the phase equilibria in solutions including
solvents and polymers. However, in the description of
compressibility factor for mixtures of hard-sphere chains,
the PHSC equation-of-state somewhat overestimates the
pressure when plotted against the reduced densityh (pack-
ing fraction).

In this study, we excluded this shortcoming by introdu-
cing a modified form, previously proposed by Chapman et
al. [9], into the bonding term of the reference equation. We
extended the model to describe the liquid/liquid equilibria
(LLE) of polymer/solvent mixtures. The proposed model is
in good agreement with experimental results.

2. Theoretical consideration

2.1. Equation-of-state

2.1.1. Pure fluids
The PHSC equation-of-state consists of reference and

perturbation terms [8] which have the dimensionless form of

P
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whereP is the pressure,r � N=V is the number density (N is
the number of molecules andV is the volume), and k is the
Boltzmann constant.

Each term of our proposed model for pure fluids,
modified through introducing Chapman’s equation into the
bonding term, can be expressed as
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where r is the number of single hard spheres per chain
molecule, which is the relative molecular size.a and b
account for the attractive forces between two non-bonded
segments and the second virial coefficient of hard spheres,
respectively and both are temperature-dependent para-
meters inherited from two universal functions,Fa�kT=1�
andFb�kT=1� in the PHSC theory.

a�T� � 2p
3

s31Fa�kT=1� �4�
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3
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3
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with
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1 �1 2 0:7303� exp�22:3973�kT=1ii �3=2� �7�
where d is the effective hard-sphere diameter,1 is the
energy parameter ands represents the size of the segment
in a particular molecule. The complete form of the equation-
of-state can be obtained by combining Eqs. (2) and (3)
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g�d1� is the radial distribution function and takes the form
of Carnahan–Starling equation

g�d1� � 1 2 h=2
�1 2 h�3 �9�

whereh is the packing fraction given by

h � rbr
4
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2.1.2. Extended equation for the polymer solutions
To extend the proposed model to the polymer solutions,

the equation for pure fluids can be written as below
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wherexi � Ni =N is the number fraction of molecules,ri is
the number of hard spheres of speciesi, andgij �d1

ij � is the
pair radial distribution function of hard-sphere mixtures
which takes the form of Boublik–Mansoori–Carnahan–
Starling (BMCS) equation [10]:
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The hard-sphere diameters have the additivity which allows
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bij �T� to be expressed as

bij �T� � 2p
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To describe the coexistence curve of binary polymer solu-
tions, we introduce two adjustable model parameters into
energy and size parameters:
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aij �T�, which explains the attractive forces between speciesi
and j, can be expressed as
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With the segment-basis variables such asrr � Nr =V and
fi � Niri =V, where Nr �

Pm
i Niri is the total number of

segments in the system of which the total volume isV,

Eq. (11) can be transformed into
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2.2. Thermodynamic functions

2.2.1. Helmholtz energy
The Helmholtz energy can be calculated from the

pressure-explicit equation-of-state [11]:
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Fig. 1. Vapor/liquid equilibria for saturated acetone. The dotted line and the
solid line are those calculated by the PHSC equation-of-state and the
proposed model, respectively. The solid squares are experimental data by
Smith and Srivastava [12].

Fig. 2. Vapor/liquid equilibria for saturated diethyl ether. The dotted line
and the solid line are those calculated by the PHSC equation-of-state and
the proposed model, respectively. The solid circles are experimental data by
Smith and Srivastava [12].



The calculation procedure and the final result are given
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2.2.2. Chemical potentials
The chemical potential is defined

mk � 2A
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and the Helmholtz energy can be rewritten
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3. Results and discussion

The proposed model has three characteristic parameters:
Number of single hard spheres per chain moleculer, a
segment sizes , and a non-bonded segment pair interaction
energy 1 . To describe the LLE of fluid mixtures, we
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introduced two binary adjustable parameters such ask12 and
l12 into energy and size terms.

Fig. 1 shows the vapor/liquid coexistence curve for
saturated acetone. Solid squares are experimental data
reported by Smith and Srivastava [12], the dotted and
solid lines are the predicted values by the PHSC equation
and the proposed model, respectively. The values of three
characteristic parameters for acetone arer � 3.578 Å,
s � 3.006 Å, and1=k � 245:1. These parameters are deter-
mined by fitting experimental data of fluid densities for pure
saturated acetone. Near the critical region, the proposed
model agrees very well with the critical point of the satu-
rated acetone. However, the PHSC equation overestimates
it. At higher density region (h . 0:4), the modified PHSC
equation-of-state predicts VLE of the saturated acetone
better than that of the PHSC equation.

Fig. 2 is the phase diagram which represents the VLE of
saturated diethyl ether. Solid circles are experimental data
reported by Smith and Srivastava [12], the dotted and solid
lines are predicted values by the PHSC equation and the
proposed model, respectively. The values of three charac-
teristic parameters for diethyl ether arer � 3.735 Å,
s � 3.485 Åand1=k � 226:8. Near the critical region, our
proposed model passes the experimental critical point.
However, the PHSC equation overestimates about 20 K.

In the higher density region (h . 0:4), our proposed
model describes the experimental data of VLE for the
saturated diethyl ether better than that of the PHSC
equation.

Fig. 3 shows the VLE of saturated pure cyclohexane.
Solid down-triangles are experimental data reported by
Smith and Srivastava [12], the dotted and solid lines are
predicted values by the PHSC equation and the proposed
model, respectively. The values of three characteristic para-
meters for cyclohexane arer � 3.689 Å, s � 3.434 Å, and
1=k � 248:5. In the entire density region, the proposed
model predicts VLE of the saturated cyclohexane remark-
ably well. However, the PHSC equation still overestimates
the experimental data. All characteristic parameters
obtained from the pure substances were directly used in
the calculation of the liquid/liquid coexistence curves for
the following polymer/solvent systems.

Fig. 4 shows cloud point data for binary polystyrene (PS)/
acetone system which shows a upper critical-solution-
temperature (UCST) behavior. The open squares are the
experimental data reported by Zeman et al. [13] and
the solid line is the calculated coexistence curve by the
proposed model. The values of three characteristic para-
meters for polystyrene are r =M � 0.01203 mol/g,
s � 5.563 Å, and 1=k � 726:8. The binary model para-
meters have the value ofk12 � 0:2106 andl12 � 0:1865.
From the values of binary model parameters, we can infer
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Fig. 3. Vapor/liquid equilibria for saturated cyclohexane. The dotted line
and the solid line are those calculated by the PHSC equation-of-state and
the proposed model, respectively. The solid down-triangles are experimen-
tal data by Smith and Srivastava [12].

Fig. 4. Liquid/liquid equilibria for polystyrene/acetone. The solid line is
that calculated by the proposed model. The open squares are experimental
data by Zeman et al. [13].



that the PHSC equation-of-state theory overestimates112

ands12 by about 21 and 19%, respectively. The calculated
coexistence curve shows a slightly narrow values compared
with the experimental data. It still predicts the critical point
remarkably well.

Fig. 5 represents a cloud point curve of the PS/diethyl
ether system which shows a UCST behavior. The open
circles are the experimental data reported by Zeman et al.
[13] and the solid line is the calculated coexistence curve by
the proposed model. Binary model parameter values for our
proposed model arek12 � 0:1845 andl12 � 0:1558. The
PHSC equation-of-state theory overestimates the energy
and size parameters by about 18 and 16%, respectively.
The proposed model slightly overestimates the experi-
mental critical point and shows a slight deviation from
the experimental data in the higher polymercomposition
region.

Fig. 6 shows a phase diagram of PS/cyclohexane which
represents a UCST behavior. Open up-triangles (PS
Mw� 520 000), open down-triangles (PSMw� 166 000),
and open diamonds (PSMw� 51 000) are experimental
data reported by Opstal et al. [14]. The solid lines are the
calculated coexistence curves for the each system. As
shown in Fig. 6, it is apparent that the deviations between
the experimental data and the calculated values from the
proposed model decreases with the molecular weight of

PS. Each system shows slight deviations from the
experimental data, however describes the critical points
very well. Binary model parameter values for PS with mole-
cular weights of 51 000, 166 000, and 520 000 arek12 �
0:1019 andl12 � 0:1293,k12 � 0:1134 andl12 � 0:1467,
and k12 � 0:1257 andl12 � 0:1653, respectively. In each
system, energy and size parameters,112 ands12, are over-
estimated by about 10–13% and 13–17%, respectively.
Further, the values ofk12 andl12 increase with molecular
weight of PS.

4. Conclusion

We successfully described the phase equilibria of several
fluids, such as saturated pure fluids and binary polymer/
solvent systems using the proposed model. Three character-
istic parameters for each substance were determined from
the properties of pure saturated fluids. Using these charac-
teristic parameters, the LLE of the given polymer/solvents
systems were predicted. Calculated coexistence curves
show good agreement with the experimental data. The
proposed model can explain the non-ideal behaviors of
polymer solutions by performing a simple modification on
the PHSC equation-of-state.
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Fig. 5. Liquid/liquid equilibria for polystyrene/diethyl ether. The solid line
is that calculated by the proposed model. The open circles are experimental
data by Zeman et al. [13].

Fig. 6. Liquid/liquid equilibria for polystyrene/cyclohexane. The solid lines
are those calculated by the proposed model. The open symbols are experi-
mental data by Opstal et al. [14].
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